Active Time Domain Testing for InfiniBand NDR Cables – MOI

MARCH 21, 2025 : REV 1.9

I² NDC

Keysight Technologies

......

InfiniBand NDR ATD AOC Revision History

Initial posting of draft NDR ATD MOI

B779 Draft Keysight NDR ATD MOI.pdf Download (3.19 MB) Preview

Configured and tested at IBTA

39th InfiniBand[™] and

RoCE Plugfest #39, May 2, 2022

Posted revised (workshop feedback) NDR ATD MOI, release candidate 1.0, September 2, 2022

Posted revised (October 5, 2022 review feedback) NDR ATD MOI, release candidate 1.1; November 30, 2022

• MTF Calibration/Test procedure

Posted revised (March 21, 2025 review feedback), Version 1.9

G800 Setup for signal generation (victim & co-propagating lanes)

Infiniband NDR

OUTLINE

The InfiniBand NDR Interface

NDR Test Platform

Preparing measurements

- Cross-talk calibration
- Victim lame calibration

Cable Test

- Cable Output Test (Tx)
- Cable Input Test (Rx)

Appendix

- DUT control pattern Generation
- DUT control long and short mode

InfiniBand NDR interface

OVERVIEW

307

Infiniband

SPEED & CABLE TYPES

	Characteristics											
	\$	SDR ÷	DDR +	QDR +	FDR10 +	FDR \$	EDR 🗢	HDR 🕈	NDR +	XDR ÷	GDR +	
Signaling r	ate (Gbit/s)	2.5	5	10	10.3125	14.0625 ^[18]	25.78125	50	100	200	400	
Theoretical	for 1 link	2	4	8	10	13.64	25	50	100	200	400	
effective	for 4 links	8	16	32	40	54.54	100	200	400	800	1600	
throughput	for 8 links	16	32	64	80	109.08	200	400	800	1600	3200	
(Gb/s) ^[19]	for 12 links	24	48	96	120	163.64	300	600	1200	2400	4800	
Encodir	ng (bits)		8b/10b ^[20] 64b/66							t.b.d		
Modulation NRZ								PAM	4	t.b.d		
Adapter late	ency (µs) ^[21]	5	2.5	1.3	0.7	0.7	0.5	0.5 <0.6 ^[22]		t.b.d.		
Yea	Year ^[23]		2005	2007	2011	2011 2014 ^[24]		2018 ^[24]	2022 ^[24]	l t.b.d.		

This Mol is focusing on full limiting active cable

- Far-end & near-end limiting not relevant at this speed
- Host Tx & Rx responsible for equalization

Cable type	Tx card	Connector	Cable	Connector	Rx card
Full limiting active copper or fiber (Active Optical)	Tx responsible for equalizing	Redriver		Redriver	Rx responsible for equalizing

Separable electrical connector

Figure 87 High-level topology block diagram

Transceiver module

Figure 88 Optical Fiber Interconnect Topology

Figure 89 Full limiting active cable topology

Infiniband

NDR INTERFACE - LEVERAGING HDR & IEEE 802.3CK

Layer 1 test procedures for validating NDR limiting active cable described in section **6.10.2.4** of the *InfiniBandTM Architecture Specification Volume 2 Release*. The document leverages HDR test strategy & IEEE 802.3ck C2M specifications.

BTA Active Time Domain (ATD) Testing for Active Cables	InfiniBand TM VOLUME 2 - F	Architecture HYSICAL SPE	Release 1.4 CIFICATIONS	Hig	jh Speed Electrica	l Interfaces		April 7, 2020 FINAL
	CHAPTE	R 6: H	IGH SPEEI	D ELEC	TRICAL INTER	FACES		
Anritsu ATD MOI for Active FDR Cables								¥
 Anritsu Keysight ATD MOI for Active EDR Cables 	6.1 INTRODUCTION							
		Th	is chapter d	escribes	the high speed in ded data on the	nterfaces for us	se with InfiniBand	TM links. The sig
 Anritsu Keysight ATD MOI for Active HDR Cables 	signaling rate as specified below. The supported data ra					ates are listed in Table 52 ¹ .		
			1	Table 52	InfiniBand Li	nk Data Rate	s	
	InfiniBand rate	Per-lane signaling	Unit Interval (UI)	Codec	Aggreg	ate full duplex th Link D	roughput, GB/s (GB)esignator	ytes/sec)
	designator	rate, GBd	period, ps		4X int	erface	12X in	terface
	SDR	2.5	400	8b/10b	(1+1) GB/s	10G-IB-SDR	(3+3) GB/s	30G-IB-SDR
	DDR	5.0	200	8b/10b	(2+2) GB/s	20G-IB-DDR	(6+6) GB/s	60G-IB-DDR
	QDR	10.0	100	8b/10b	(4+4) GB/s	40G-IB-QDR	(12+12) GB/s	120G-IB-QDR
	FDR	14.0625	71.11	64b/66b	(6.8+6.8) GB/s	56G-IB-FDR	(20.4+20.4) GB/s	168G-IB-FDR
	EDR	25,78125	38,78	64b/66b	(12.5+12.5) GB/s	104G-IB-EDR	(37.5+37.5) GB/s	312G-IB-EDR

26 5625

37 647

IEEE P802.3ck[™]/D3.3, 10 June 2022 (Amendment of IEEE Std 802.3[™]-2022 as amended by [list to be populated during publication process])

IEEE P802.3ck™/D3.3

Draft Standard for Ethernet Amendment 4:

Physical Layer Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Based on 100 Gb/s Signaling

Note: While current specifications are limited to four lanes (400Gbps), some devices and interfaces can accommodate up to eight lanes. In this document, we assume <u>OSFP112G</u> interface but the procedure is identical for <u>QSFP-DD800</u> interface (8 lanes), and <u>QSFP112</u> interface (4 lanes).

PAM4 & (25+25) GB/s 200G-IB-HDR (75+75) GB/s

600G-IB-HDR

InfiniBand NDR interface

TEST POINTS

307

NDR Cable Test References

SECTION 6.10.2.4 NDR-PAM4

Main reference: <u>InfiniBandTM Architecture</u> <u>Specification Volume 2 Release 1.6</u>

- Full limiting active cables section 6.10.2.4
- MCB characteristics ANNEX A1

Notable differences with IEEE 802.3ck

- Optional eye width (eye mask) test at TP7a
- crosstalk amplitude (see <u>NEXT calibration slide</u>)

Host Compliance Testing

SECTION 6.10.2.3 NDR-PAM4

Figure 222 Host transmitter output characterization setup using HCB

Figure 94 Host compliance board test points

Host compliance test procedures are not covered in this document

Main reference <u>InfiniBandTM Architecture Specification</u> <u>Volume 2 Release 1.6</u> section 6.10.2.<u>3</u>

OVERVIEW

HW CONFIGURATION OVERVIEW

SAME CONFIGURATION FOR CABLE INPUT AND OUTPUT TESTS

Setup Configuration

AEC Testing for TX and RX

- M8042A for victim lane generation
- G800GE-02 as a reference host
 - Port 1 (QSFP-DD or OSFP): generate counter-propagating traffic
 - Port 1 BER/FLR measurement of all lanes (incl. victim lane)
 - Port 2 (coax) generates co-propagating aggressor lanes
- N1000A + N1060A as reference Receiver
 - Runs FlexDCA (firmware) and N1091CKCA app
- Wilder MCB as Mated Test Fixture* *Keysight part number SP0602A for OSFP or SP0606A for QSFP-DD 112G
- AEC Cable or AOC Device Under Test
- M8045A-801 Short Cable 1.85mm
- M8045A-802 Matched Cable Pairs
- : Laptop
 - M8070B (BERT firmware), Wilder CMIS, M8091CKA Rx app
 - , FlexDCA (scope firmware) and N1091CKCA app (optional, can run on N100A)
 - 5 USB ports for BERT, DCA, MCB, Mouse & keyboard

EQUIPMENT LIST

EQUIPMENT OVERVIEW (OPTIONS ON NEXT PAGES)

M8050A system

M8042A pattern generator for victim lane generation

1x Wilder Technologies MCB

- 1x OSFP-TPA1.85-MCB-R or
- 1x QSFPDD-TPA1.85-MCB-R
 - OSFP, 1.85mm connector •
 - CMIS control .
 - Incl. power supply (16Watt) •
 - Incl. FAN ٠

1x Wilder Technologies HCB

- 1x OSFP-TPA1.85-HCB-P or
- 1x QSFPDD-TPA1.85-HCB-P
 - 1.85mm connector ٠

G800GE-02 system

- QSFP-DD + COAX interface or .
- OSFP + COAX interface ٠

Samtec "Bullseye" coaxial cable interface

BE40A-S-24SP-2-2-160500

N1000A+N1060A

- Reference receiver for
 - Module output test
 - victim lane calibration
 - Near-end aggressor calibration

Cables & RF adapters

3 x 1.85mm Matched cable pairs

Equipment List

RECOMMENDED HW

Item #	Vendor	Part Number	Description	Options	Qt y	Details
1	Keysight	M8040A	5 slot AXIe chassis	M8040A-BU2	1	Chassis
2	Keysight	M8042A	Pattern generator and clock module 64GBaud	M8042A-0G1/-G64/-0G1/-0G4 M8009A-061/ -0G3	1	Signal source for pattern generator and jitter impairment
3	Keysight	M8058A	Remote head (1.85mm)		2	
4	Keysight	G800GE-02	941-0087 (OSFP+coax), 941-0089 (QDD+coax)	905-1102	1	Aggressor lane generation and BER/FLE measurement
5	Samtec	BE40A	50 GHz, Bulls Eye® High-Performance Test Assembly	BE40A-S-24SP-2-2-160500	1	Coax cable interface for port 2 of G800GE
6	Keysight	N1000A + N1060A	DCA-X Wide-Bandwidth Oscilloscope Mainframe + N1060A Precision Waveform Analyzer	N1000A-PLK/-STB N1060A-050/-EVA/-264/-PTB/-JSA	1 1	For TX test and stressed signal calibration
7	Wilder	DCOM-ISI- 112G-9CH	Channel emulation board or any other ISI trace compliant with IEEE 802.3ck.	-	1	For C2M long channel calibration and testing – optional M8070ISIB SW can be used instead
8	Wilder	SP060x	SP0603A for OSFP or SP0607A for QSFP-DD 112G HCB Test Adapter	SP0603A/ SP0607A	1	For Crosstalk calibration (TX & RX Tests)
9	Wilder	SP060x	SP0602A for OSFP or SP0606A for QSFP-DD 112G MCB Test Adapter incl. fan to cool down the device	SP0602A/ SP0606A	2	Module Compliance Board for active cable testing
10	Keysight	M8045A-801	Short Cable 1.85 mm (m) to 1.85 mm (m), 0.15 m, absolute matching 699 ps +- 1 ps	-	4	2 for BERT Remote Heads; 2 for MTF to scope (2 from ISI Board to MCB)

Equipment List

LAPTOP & SW

Item #	Vendor	Part Number	Description	Revision	Details
			Laptop with at least 3 UBS ports (USB hub possible), Windows 10, 64bits and valid license for the SW products listed below. Microsfot Excel required for stressed input calibration		
12	Keysight	FlexDCA		A.07.41.27	or higher
13	Keysight	M8070B	System software for M8000 series of BER test solutions	10.0.160.6	or hgher
14	Keysight	M8070ISIB	Adjustable ISI Channel Emulation Package for M8000 Series BER Test Solutions	1.8.160.2	or higher, For emulating long host channel. ISI board can be used instead.
15	Keysight	M8070ADVB	Advanced Measurement Package for M8000 Series BER Test Solutions	1.6.180.2	Or higher
16	Keysight Technologies	N1091CKCA	DCA TX test application for IEEE802.3ck	1.23.0.0	Automation TX test for C2M at TP4; Beta version used
17	Keysight Technologies	M8091CKCA	RX conformance test application for IEEE 802.3ck	1-2-3-0	Automation RX test for C2M Input at TP1
	Wilder Technologies		CMIS GUI Sofware Version 2.27	2.27	Or higher. To control the DUT (turn on/off)

EQUIPMENT AND SIGNAL CALIBRATION

N1060A DCA - OVERVIEW

<u>N1060A</u>

 Guide for making RF connections (including applying torque, connectors and adapters: <u>https://helpfiles.keysight.com/scopes/FlexDCA-</u> <u>UG/Content/Topics/Modules/N1060A.htm?Highlight=N1060A%20Precision%2</u> 0Waveform%20Analyzer%20Module

FlexDCA Module Calibration

- Perform the module calibration on N1060A before making any physical connections to the DUT
- <u>https://helpfiles.keysight.com/scopes/FlexDCA-</u> <u>UG/Content/Topics/Calibration/b_cal_module.htm?tocpath=Tools%7CCalibration/b_cal_module.htm?t</u>

N1060A & 1091CKCA - OVERVIEW

Channel Deskew

- Execute the 'auto differential deskew' on FlexDCA after establishing the measurement connection and before initiating the measurement
- Link: https://helpfiles.keysight.com/scopes/FlexDCA-UG/Content/Topics/Channels/advanced-elect-diff-setup.htm
- It is recommended to perform the channel deskew on the N1091CKCA app. Navigate to Set Up tab, select Set Channel Skew, enable the Channel 1A & 1B and then hit 'OK' run the deskew process

De-embed

- Use InfiniiSIM setup to remove cable loss
- Navigate to the Set Up tab, configure the infiniiSIM setup, choose to remove s2p/s4p using s-parameter file

M8050A BERT - OVERVIEW

G800GE - OVERVIEW

The G800GE platform supports 50G (26.125Gbd PAM4) and 100G (53.125Gbd PAM4) lane rates required for HDR and NDR cable testing.

The G800GE platform is used for both input and output test

- Input test (Tx test)
 - Port 1 signal generation (victim & co-propagating lanes)
 - Port 2 counter-propagating aggressors
- Output test (Rx test)
 - Port 1 Error detector (BER & LFR)
 - Port 2 counter-propagating aggressors (calibration only)
 - Port 2 co-propagating aggressors lanes (optional)

NDR Active Cable Test Platform

SAME CONFIGURATION FOR CABLE INPUT AND OUTPUT TESTS

G800GE - CONNECTING PORT 2 COAX INTERFACE

The G800GE Port 2 (Coax)

- "Transmit" on odd lanes
- "Receive" on even lanes
- "A" and "B" are the differential pairs

Refer to this document for detailed procedure

G800GE - GENERAL SETTINGS

- 1. Open G800GE KiOS
- 2. Change Line Speed to eBERT, 100G Lanes

4. Set **Port 2** BERT Pattern to PRBS13Q

For NEXT calibration only. After that change back to PRBS31Q

Port 1

3. Set port 1 BERT Pattern to PRBS13Q PRBS31Q required for TP7a (IEEE TP4) measurements

de BERT	Transceiver Cano	cel Apply		
BERT Patte	em.			
Lane	Tx Pattern	Tx Invert	Rx Pattern	
1	PRBS-13Q ¥		Auto-Detect 🖌	
2	PRBS-13Q ¥		Auto-Detect 🖌	
3	PRBS-13Q ¥		Auto-Detect 🖌	
4	PRBS-13Q ¥		Auto-Detect 🖌	
5	PRBS-13Q ¥		Auto-Detect 🖌	
6	PRBS-13Q ¥		Auto-Detect 🗸	
7	PRBS-13Q ¥		Auto-Detect 🗸	
8	PRBS-13Q ¥		Auto-Detect 🖌	

AGGRESSOR LANES CALIBRATION

G800GE SETTINGS #2

4. Turn on the transceiver on Port 1

• Tx host settings can be set to Auto-detect

• If the device remains in low-power mode, force to exit it

5. verify that the module state is "active" and that it is drawing current

6. Set host Tx settings on Port 2

 See <u>near-end aggressor (NEXT) calibration</u> <u>slide</u> for counter-propagating channel calibration

NEAR END CROSSTALK (NEXT) CALIBRATION

- 1. Connect Port2 Tx lanes as follows: HCB_Rx_n \rightarrow MCB_Rx_n
- 2. Connect the NEXT lane to be calibrated on the scope
- 3. Terminate other lanes

NEAR END CROSSTALK (NEXT) CALIBRATION

4. Tune G800GE Port 2 Host Settings

- Observe the near-end aggressor @ TP7a on the scope using PRBS13Q and set scope response (SIRC) to 4th order BT with 40GHz bandwidth
- Adjust the host settings on the G800GE port2 (coax) to get as close as possible to
 - 17ps 20-80% rise-time , 450mV pk-pk amplitude
 - Recommended Tx host settings are: Pre3 / Pre2 / Pre / Main / Post / Post2 / Post 3 0 / 3 / -8 / 41 / -11 / 0 / 0

ort 2, Coax, BERT, Coax		1	Ø.	1	4	1				
Mode BERT Transceive	r Ca	ancel	A	oply						
Profiles / Link Trainin	g & A(\$		egot	iatio	n					
Manual		7	•		Add		Rese	t Defa	aults	
Host SerDes						1		4		
Lane	1	2	3	4	5	6	7	8	Select All	
	B	2								
Pre-Cursor3	0	0	0	0	0	0	0	0		< >
Pre-Cursor2	3	3	3	3	3	3	3	3	111.	< >
Pre-Cursor	-9	-9	-9	-9	-9	-9	-9	-9		< >
Main	39	39	39	39	39	39	39	39	•	< >
Post-Cursor	-12	-12	-12	-12	-12	-12	-12	-12		< >
Post-Cursor2	0	0	0	0	0	0	0	0	•	< >
Post-Cursor3	0	0	0	0	0	0	0	0	•	< >
Total (max 63)	63	63	63	63	63	63	63	63	liter has a second second	

VICTIM LANE CALIBRATION

Victim Lane Calibration

REFERENCE TRANSMITTER MEASUREMENTS

- 1. Start M8070B BERT Firmware
- 2. Start M8091CKCA application
 - Select C2M Module input Test
 - Connect the to the Instruments Firmware
- 3. Go to the configure Tab and select the *Debug* Mode
 - In transmitter Measurements set BUJ to 0.01UI

(this ensures that the transmitter has a realistic jitter profile and prevent too much random jitter to be added during victim lane

Victim Lane Calibration

REFERENCE TRANSMITTER MEASUREMENTS

- 4. Jitter source and transmitter calibrations
 - Connect the PG directly to the scope
 - In the Select Test Tab select
 - Amplitude, SJ and UUGJ Calibration
 - Transmitter Measurements
 - Right-click to start the calibrations or go to the s tab to create some tags for your calibration (date, parameters etc.)

Transmitter characterization connections for C2M Module Input Test

Note: before running the calibration, verify that the skew between the scope differential port must be less than 2ps. If this is not the case, the scope skew must be re-calibrated.

Example Setup Configuration

VICTIM LANE - C2M MODULE INPUT CALIBRATION

- Connect as shown above
- Victim lane is always "lane 1"

Cable Test – Victim Iane calibration

SHORT HOST CASE

1. "Configure Tab"

• Host Channel = Low Loss

3. After calibration

- Save M8091CKCA project as "low-loss"
- Save M8070B settings as "low-loss"

- 2. "Select Tests" Tab
 - Unselect previous calibration tests
 - Select "Stressed Eye Calibration", right-click→ "run checked tests"

× 0	Comp	lianc	e RX Tes	t Automatio	n for IEEE	802.3cl	k C2	M_ModuleIn	iput_shor	Compliance RX Test Automation for IEEE 802.3ck C2M_ModuleInput_short										
File	Vie	w T	ools He	elp																
Set	Up	Sele	ct Tests	Configure	Calibratio	on View	Run	Automate	Results	HTML	Report	-	С							
			EEE 802.	.3ck Tests																
			C2M M	odule Input	(100GAUI	-1, 2000	GAUI-2	, and 400G	AUI-4)											
			📘 Calil	orations																
				Crosstalk Ca	alibration															
			▲ 🗸 📘	Amplitude C	Calibration															
			▲ 🗸 📘	SJ Calibratio	on															
			Δ 🗸 📃	UUGJ Calibr	ation															
			▲ 🗸 📃	BUJ Calibrat	tion															
5				Transmitter	Measuren	nents														
			▲ ✓ 🖌	Stressed Ey	e Calibrat	jon							0							
C			Δ 🚺	Differential	Peak-Peal	Run ch	iecked	tests					9							
-		•	Test	s		Check	All						N							
-						Unche	ck All													
						Delete	all res	sults for che	cked test	s										
H						Delete	all res	sults for ALL	tests											
S																				

Cable Test – Victim Iane calibration

LONG HOST CASE

- 1. Save the "Short host" project as "Long host"
- 2. "Results" tab
 - Delete the previous stress eye calibration result (short host)

6. After calibration

Save M8091CKCA project as "high-loss" Save M8070B settings as "high-loss"

- 3. "Configure" Tab
 - Host Channel = High Loss
- 4. "Select Test" Tab
 - Select "Stressed Eye Calibration", right-click→ "run checked tests"

5. **!Manual Step! -** After BERT has been initialized

- Go to M8070B M2-DataOut1. ISI
- Add -10dB ISI at Nyquist (max Freq)

l			(i)	~	Inte	rsymbo	l Inter	ference			M2.DataOut1	
	unal 2				Stat	е						
aı	Tria	Out	*		External ISI Board						None \sim	
_	ing	out			Mode						One Point 🗸	
l	Ctrl O	ut A	(Freq	uency					26.562 GHz	
Г					Insertion Loss						-10.0 dB	
_	Frequen	cy			-1-0					\times	-0.38 dB/GHz	
	Acceptab	26.562	GHz	GH	$\mathbf{\nabla}$	5.562 G	HZ Mir	n Def		Max	0.00 dB	
		•			· 						M2.DataOut1	
	/	8	y		Ľ			Enter			M2.DataOut1	
	4	5	6	E	EX			GHz			ference (ISI)	î
	1	2	3		<			MHz			ncy	
	0		+/-		>							
												_

Cable Test

1-2.50221

TEST OVERVIEW

SAME CONFIGURATION FOR CABLE INPUT AND OUTPUT TESTS

NDR ATD Testing MOI

Combined Cable Input and Output Test

TEST OVERVIEW

The cable performance should be verified for two different host-channel scenarios with low and high insertion loss referred to as **near-end (low loss)** and **far-end (high loss)**. In addition, the module can support both **short** and **long** mode.

	Output	test	Input test				
	Host Near-end	Host Far-end	Host Near-end	Host Far-end			
Module "Short"	mandatory	Optional	mandatory	mandatory			
Module "Long"	Optional	mandatory	mandatory	mandatory			

Notes:

- The module is set in "Short" or "Long" mode via the CMIS interface.
- These tests should be carried out for both ends of the cable (A & B)
- The victim lane is set in "near-end" or "far-end" configuration by loading the "low-loss" or "high-loss" M8070B settings saved during victim lane calibration
- BER and FEC stats are read on the other end of the cable plugged into the G800GE module

Input Test

EXAMPLE RESULTS

Drax × +	W Drax x +											
\leftrightarrow \rightarrow C (i) localhost/bert/1/1												
♠ Íxía G800GE-02 4.2 Build	70 EA	Electrical BERT Interop D	emo		eBERT, 100G	Lanes SETTINGS	STATS CMIS 🗮					
Port 1, QSFP-DD800, BERT, MOLEX	18372	80010, Undefined SMF	:		· · · · ·		1 2					
Inferred FEC												
		400GE [+]	200GE [+]	1.1 100GE [-]	1.2 100GE [-]	1.3 100GE [-]	1.4 100GE [-]					
FEC Total Bit Errors	3	12,082,713	12,082,713	12,049,994	4,553	7,760	20,406					
FEC Max Symbol Errors	D	5	5	9	3	2	3					
FEC Corrected Codewords	0	11,738,154	11,716,644	11,294,812	4,538	7,745	20,371					
FEC Total Codewords	D	4,275,855,744	4,275,855,744	1,068,963,936	1,068,963,936	1,068,963,936	1,068,963,936					
FEC Frame Loss Ratio	D	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00					
preFEC Bit Error Rativication	อ ไร	no stat	5.19e-07	2.07e-06	7.83e-10	1.33e-09	3.51e-09					
FEC RX Clock PPM Onset			3	0.000	0.000	0.000	0.000					
FEC RX Link Loss	0	0	0	0	0	0	0					
FEC Codewords with 0 Symbol Erro	rs 0	4,264,117,590	4,264,139,100	1,057,669,124	1,068,959,398	1,068,956,191	1,068,943,565					
FEC Codewords with 1 Symbol Erro	rs O	11,527,447	11,485,233	10,713,668	4,524	7,736	20,340					
FEC Codewords with 2 Symbol Erro	rs O	206,092	226,017	540,382	12	9	30					
FEC Codewords with 3 Symbol Erro	rs O	4,407	5,163	36,906	2	0	1					
FEC Codewords with 4 Symbol Erro	rs O	207	226	3,511	0	0	0					
FEC Codewords with 5 Symbol Erro	rs 0	1	5	295	0	0	0					
FEC Codewords with 6 Symbol Erro	rs 0	0	0	47	0	0	0					
FEC Codewords with 7 Symbol Erro	rs 0	0	0	2	0	0	0					

Output Test

EXAMPLE RESULTS

M I	IEEE 802.3 ck Application NEW PROJECT										
File	e View Tools Help										
Set	Up Select Tests Configure C	Connect	Run	Automate	Results	HTML Report					
	Test Name					Actual Value	Margin %	Pass Limits			
0	Auto-tune Near-end CTLE Eye (Opening T	P4 (S	hort)		-1.0 dB		Information Only			
1	Auto-tune Far-end CTLE Eye Op	pening TP4	4 (Lor	ng)		-8.0 dB		Information Only			
-	Full-band peak-to-peak AC com	nmon-moc	le vol	tage, VCM-	FB (Short)	7.19 mV	91.0125	VALUE <= 80.00 mV			
-	Differential Output Voltage Test	(Short)				542 mV	9.66667	VALUE <= 600 mV			
/	Signaling Rate (Short)					53.124980000 GBd	49.8118	53.119687500 GBd <= VALUE <= 53.130312500 GBd			
-	Near-end Eye Height (Short)					66.60 mV	344.000	VALUE >= 15.00 mV			
*/	Near-end Vertical Eye Closure (Short)				4.460 dB	62.8333	VALUE <= 12.000 dB			
	Far-end Eye Height (Long)					21.90 mV	46.0000	VALUE >= 15.00 mV			
	Far-end Vertical Eye Closure (L	ong)				5.600 dB	53.3333	VALUE <= 12.000 dB			
= <	(_								
- Pi	arameter	Value									
N N	ertical Eye Closure - IEEE802.3cl	< 5.600 dl	3								
	Additional Info										
С	TLE setting (gDC)	-8.0 dB									
С	TLE setting (gDC2)										
E	ye Probability										
E	ye 0/1 VEC	5.60000	dB								
E	ye 1/2 VEC	4.79000	dB								
E	ye 2/3 VEC	5.19000	dB								

Cable Test

せってませつ

CABLE OUTPUT TEST PROCEDURE

NDR USING N1091CKCA FOR IEEE 802.3CK

Note: The following tests are conducted using the N1091CKCA DCA TX Test Application

- 1. Open the N1091CKCA application through the FlexDCA interface.
 - Navigate to Apps > Automated Test App > N1091CKCA.
- 2. Choose the C2M interface.
 - For instructions on de-embedding cables and adjusting scope skew, please see slides #18 and #19.

	Eye/Mask	Pattern Acquisition	File Setu	p Measure	Tools	Apps Help	Auto Scale	Run Stop	Single Clear	×	
	Extinction Ratio	10.01856 ns				Automated Tes	st Apps		N1095BSC N1091CKC	a dca o _f A ieee80	otical Test Ap 2.3ck Electric
3	Z IEEE 802	.3 ck Applicatio	n New D	evice1	-			-		⊐∬X	
F	ile View Set Up Sel	Tools Help ect Tests Conf	igure Cor	nect Run	Autom	ate Results	HTML Rep	port			
	Standard 0 100 100 100	Option GAUI-1, 200GAI GBASE-CR1, 20 GBASE-KR1, 20	JI-2, 400G 0GBASE-C 0GBASE-K	AUI-4 C2C (R2, and 400 R2, and 400	C2M GBASE- GBASE-	CR4 KR4				, 	
dn 14s	Measurer Set Char	ment Setup mel Pair Infiniis Selected Channe	Sim Setup	Set Chann	el Skew	Select Lan	e Number	r J			
	ERL File S Fixture R Return Lo	Setup: ef File Setup: oss Setup							Browse	e 	

NDR USING N1091CKCA FOR IEEE 802.3CK

- 3. It is recommended to perform the "auto-tune eye opening test" for optimal CTLE settings related to eye opening.
 - This option can be accessed under the Utilities test.

Auto-tune Eye Opening Test Settings

- By default, the application selects "Optimized CTLE using COM method" as the CTLE mode. In this setting, the app will capture the signal and transform it into Pulse response, subsequently recommending TX FFE tap settings to enhance the output signal.
- Alternatively, users can opt for the 'brute force method' to evaluate all CTLE combinations, although this results in a longer measurement duration.
 - To switch to the brute force method, navigate to the configure tab under Utilities and change the CTLE mode from "optimized CTLE using COM method" to "Auto-tune."
 - Brute force method may take approx. 40 mins for one auto-tune test, 160 mins for all 4 auto-tune utility test.

🌗 🖪 Utilities

- Auto-tune CTLE, DFE Eye Opening TP1a
- 🚯 🗹 Auto-tune Near-end CTLE Eye Opening TP4 (Short)
 - Auto-tune Near-end CTLE Eye Opening TP4 (Long)
 - Auto-tune Far-end CTLE Eye Opening TP4 (Short)
- 🕕 🗹 Auto-tune Far-end CTLE Eye Opening TP4 (Long)

I Indian -	
Utilities	
COM tool settings	
CTLE Mode (Optimized CTLE using COM	Method)
Search using COM recommended setting	gs (Yes)
Tx FFE source for Auto-tune (FFE in DU	T)
Measure Jitter For COM Method (Yes)	
SNDR (32.5)	
RLM (0.95)	

Parameter	Limits to meet, for Autotune utility test to report optimal eye opening
Eye Height	15mV (min)
VEC	12dB (max)

*App will not report result if failed to meet the above limit, even it is opened eyes signal

NDR USING N1091CKCA FOR IEEE 802.3CK

Auto-tune Eye Opening Test Settings (cont.)

TX FFE source for Auto-tune

- The default setting is "FFE in scope," which utilizes FlexDCA's math block to apply the FFE settings suggested by the COM tool. It serves as a "preview" of the recommended TX FFE setting.
- If TX tap settings (equalizer) can be adjusted, it is advisable to change the setting to "FFE in DUT." This will prompt the app to guide you in modifying the tap settings after calculating the necessary values.

Jitter Measurement for COM

 To determine COM, it is necessary to have Add and Sigma RJ, which can be assessed using the jitter mode of FlexDCA.

Utilities

COM tool settings

SNDR (32.5)

RLM (0.95)

CTLE Mode (Optimized CTLE using COM Method) Search using COM recommended settings (Yes)

Tx FFE source for Auto-tune (FFE in DUT) Measure Jitter For COM Method (Yes)

- If the signal experiences degradation, FlexDCA might have difficulty in accurately characterizing it while in jitter mode.
- This mode is enabled by default; if characterization issues arise, consider disabling it.
- When turned off, two additional parameters become visible: Jrms and J3u, which have specification limits of 0.023 and 0.115, respectively.
- The utility test will bypass the 12-edge jitter mode to evaluate Jrms and J3u, utilizing 0.023 and 0.115 as the input values.

NDR USING N1091CKCA FOR IEEE 802.3CK

Settings for Auto-tune Eye Opening Test (cont.)

SNDR and RLM values

• These represent the specification limit values. Users may adjust the SNDR and RLM values if their measured results fall below these limits.

General Settings

- This indicates the starting and stopping values (range) for the TP1a & TP4 CTLE auto tune, which is advised to stay at the default setting.
- Users have the option to modify this range if desired.

Utilities

COM tool settings CTLE Mode (Optimized CTLE using COM Method) Search using COM recommended settings (Yes) Tx FFE source for Auto-tune (FFE in DUT) Measure Jitter For COM Method (Yes) SNDR (32.5)

RLM (0.95) General settings

Select Eye for Auto-Tune (Average All) Start value for gDC CTLE auto-tune (-2dB) Stop value for gDC CTLE auto-tune (-11dB) Start value for gDC2 CTLE auto-tune (0dB) Stop value for gDC2 CTLE auto-tune (-3dB) Start value for Near-end gDC CTLE auto-tune (Short) (-1dB) Stop value for Near-end gDC CTLE auto-tune (Short) (-5dB) Start value for Near-end gDC2 CTLE auto-tune (Short) (0dB) Stop value for Near-end gDC2 CTLE auto-tune (Short) (-2dB) Start value for Near-end gDC CTLE auto-tune (Long) (-1dB) Stop value for Near-end gDC CTLE auto-tune (Long) (-5dB) Start value for Near-end gDC2 CTLE auto-tune (Long) (0dB) Stop value for Near-end gDC2 CTLE auto-tune (Long) (-2dB) Start value for Far-end gDC CTLE auto-tune (Short) (-2dB) Stop value for Far-end gDC CTLE auto-tune (Short) (-9dB) Start value for Far-end gDC2 CTLE auto-tune (Short) (-1dB) Stop value for Far-end gDC2 CTLE auto-tune (Short) (-3dB) Start value for Far-end gDC CTLE auto-tune (Long) (-2dB) Stop value for Far-end gDC CTLE auto-tune (Long) (-9dB) Start value for Far-end gDC2 CTLE auto-tune (Long) (-1dB) Stop value for Far-end gDC2 CTLE auto-tune (Long) (-3dB)

NDR USING N1091CKCA FOR IEEE 802.3CK

- 4. Peak-to-Peak AC Common-Mode Voltage Test (VCMPP)
 - The maximum limit for VCMPP-LF is set at 32 mV.
 - The maximum limit for VCMPP-FB is established at 80 mV.

In the application, choose the Peak-to-Peak AC Common-Mode Voltage (Low Frequency & Full-Band) test to conduct.

- Note: Due to Equivalent Time Sampling scope aliasing affecting the noise spectrum, the DCA will provide measurements across the full band utilizing internal hardware filters (no extra filtering is required).
- **Note:** The application will perform measurements with a probability of 10E-5.
- Note: For the Peak-to-Peak AC Common Mode (Low Frequency), an additional 2x 100 MHz low-pass filter will be necessary.

NDR USING N1091CKCA FOR IEEE 802.3CK

- Differential Output Voltage Test (maximum limit for short mode: 600mV, maximum limit for long mode: 845mV) and DC Common-Mode Voltage Tolerance (specified limit range: -0.35 to 2.85V)
 - Within the application, choose the Differential Output Voltage Test and the DC Common-Mode Voltage Tolerance Test to execute.

NDR USING N1091CKCA FOR IEEE 802.3CK

6. Measurement of Transition Time (minimum specification limit: 8.5 ps)

- Choose the transition test measurement option
- Conduct rise-time and fall-time evaluations
 - Note: This is monitored through a fourth-order Bessel-Thomson low-pass filter with a 3dB bandwidth of 40GHz; performed internally using a time-equivalent hardware filter

NDR USING N1091CKCA FOR IEEE 802.3CK

- 7. Near-end Eye Height (minimum 15mV; short/long mode)
 - Choose the Near-end Eye Height test and initiate the process.
 - In short mode, the application will use the Zp=0 insertion loss file for the measurement.
 - In long mode, the application will utilize the Zp=80 insertion loss file for the measurement.

8. Near-end VEC (maximum 12dB; short/long mode)

- Select the Near-end VEC test and commence the evaluation.
 - The short mode will incorporate the Zp=0 insertion loss file for measurement.
 - The long mode will employ the Zp=80 insertion loss file for measurement.

Table 120G–5—PCB length for module output measurements

Module output mode	Host channel type	PCB length, z_p (mm)
Short	near-end	0
Short	far-end	133
Long	near-end	80
Long	far-end	244.7

M IEEE	IEEE 802.3 ck Application New Device1							
File Vi	ew Tools He	lp						
Set Up	Select Tests	Configure	Connect	Run	Automate	Results	HTML Report	
	🌗 📘 PAM-4	Module Out	out Charac	teristio	cs at TP4			
	🕗 🌗 🗖 Shor	t Module Ou	itput Mode					
		ain Voltage	Measurem	ents T	P4 (pattern:	PRBS130	2)	
	🛛 🕨 🔵 Tr	ansition Tim	e Measure	ments	s TP4 (patter	n: PRBS1	13Q)	
S	🕘 🔁 Si	gnaling Rate	and Eye I	Mask I	Measuremen	ts TP4 (p	attern: PRBS13	Q)
<u> </u>		Signaling R	ate (Short)				
m		Near-end E	ye Height	(Short	t)			
C		Near-end V	ertical Eye	Closu	ıre (Short)			
7	Far-end Eye Height (Short)							
TE		Far-end Ve	rtical Eye (Closure	e (Short)			

IEEE 802.3 ck Application New Device1								
File Vi	ew Tools He	lp						
Set Up	Select Tests	Configure	Connect	Run	Automate	Results	HTML Report	
SELECT TE	 PAM-4 Shor Ma Tr Si 	Module Outp t Module Outp ansition Tim gnaling Rate Signaling R Near-end E Near-end Ey Far-end Ve	but Charac atput Mode Measurem e Measure e and Eye ate (Short ge Height (Strical Eye e Height (S rtical Eye (teristic ents T ements Mask I :) (Short 2 Closu Short) Closur	es at TP4 P4 (pattern: TP4 (patter Measuremen t) ure (Short) a (Short)	PRBS130 rn: PRBS1 Its TP4 (p	Q) L3Q) attern: PRBS13	3Q)

NDR USING N1091CKCA FOR IEEE 802.3CK

- **9.** Far-end Eye Height (minimum 15mV; short/long mode)
 - Choose the Far-end Eye Height test and initiate it
 - In short mode, the application will incorporate the Zp=133 insertion loss file for measurement
 - In long mode, the application will incorporate the Zp=244.7 insertion loss file for measurement

10.Far-end VEC (maximum 12dB; short/long mode)

- Choose the Far-end VEC test and initiate it
 - In short mode, the application will incorporate the Zp=133 insertion loss file for measurement
 - In long mode, the application will incorporate the Zp=244.7 insertion loss file for measurement

Module output mode	Host channel type	PCB length, z _p (mm)
Short	near-end	0
Short	far-end	133
Long	near-end	80
Long	far-end	244.7

Noise/Jitter

IEEE 802.3 ck Application New Device1							
File View Tools Hel	p						
Set Up Select Tests	Configure	Connect	Run	Automate	Results	HTML Report	
	Module Outp t Module Ou ansition Tim gnaling Rate Signaling R Near-end E Near-end V Far-end Ver Far-end Ver	out Charact htput Mode Measureme e Measure e and Eye I ate (Short ye Height fertical Eye ctical Eye (teristic ents T ments Mask M (Short Closu Closure	es at TP4 P4 (pattern: TP4 (patter Measuremen :) :re (Short) = (Short)	PRBS130 m: PRBS1 ts TP4 (p	2) 13Q) attern: PRBS13	ŝQ)

Cable test

せバリン

CABLE INPUT TEST PROCEDURE

SAME CONFIGURATION FOR CABLE INPUT AND OUTPUT TESTS

NDR ATD Testing MOI

RX IEEE802.3ck Specification

MODULE INPUT (TP1)

Table 120G–10—Module stressed input parameters

Parameter	Value	Value
Pattern generator transition time (target)	9	ps
Applied peak-to-peak sinusoidal jitter	Table 162–17	_
Eye height (target)	10	mV
Vertical eye closure, VEC (min)	12	dB
Vertical eye closure, VEC (max)	12.5	dB
Crosstalk differential peak-to-peak voltage	845	mV
Crosstalk transition time	8.5	ps

NDR RX Test

MODULE INPUT (TP1)

- 1. Plug one end of the cable (A) in the MCB and the other end (B) in the port#1 of the G800GE
- 2. In the Wilder CMIS GUI, check if the module is operating in short or long mode (instruction <u>here</u>)
- 3. in M8070B (BERT FW), recall the calibration settings for short or long mode
- 4. In KiOS (G800GE FW)
 - · Go to "stats"
 - Read the error stats (BER and FLR) of the victim lane (see example <u>here</u>). To check which one is the victim lane, turn off/on the BERT global output in M8070B Swap the cable and read the error for the other end (B) of the cable
- 5. If possible, change the mode of both end of the cable (via KiOS CMIS and Wilder GUI CMIS) and repeat the procedure

Controlling the DUT mode

MODULE SHORT AND LONG MODE

Module short and long modes

THE NEED TO ACCOMMODATE DIFFERENT HOST CHANNELS

102.4T Implementation Study, Cisco

Connector ILdd up to 1.6 dB ↔

Channel ILdd up to 16 dB

- The Host dd IL can range from 2.3dB to 11.9dB (realistically from ~5dB to ~11dB)
- To ensure a successful link with the module, the host chip, which knows the run length of the soldering, can
 - Adjust its Tx FIR and Rx CTLE
 - Request the module to operate in the *short* or the *long* mode

Table 120G-3-Module output characteristics at TP4

Parameter	Reference	Value	Units
Signaling rate, each lane (nominal)		53.125 ^a	GBd
Differential peak-to-peak output voltage (max) Short mode Long mode	120G.5.1	600 845	mV mV
Eye height (min)	120G.3.2.2	15	mV
Vertical eye closure, VEC (max)	120G.3.2.2	12	dB

Host

C2M component

Receiver

Module C2M

component

ransmitter

Module *short* and *long* modes

THE NEED TO ACCOMMODATE DIFFERENT HOST CHANNELS

IEEE 802.3 interface type	Module output mode	Host electrical interface
100GAUI-1 C2M	short	100GAUI-1-S C2M
100GAUI-1 C2M	long	100GAUI-1-L C2M
200GAUI-2 C2M	short	200GAUI-2-S C2M
200GAUI-2 C2M	long	200GAUI-2-L C2M
400GAUI-4 C2M	short	400GAUI-4-S C2M
400GAUI-4 C2M	long	400GAUI-4-L C2M

Table 120G–4—Module output mode mapping

→ Modules are usually per default in "*short*" mode → The host will "tweak" module CMIS (Tx settings) to make it operate in long mode.

- The module output supports two equalization states: short and long. In the short state, the module shall meet for nearend requirement (low loss channel). In the long state, the module shall meet for far-end requirement (high loss channel).
- Four Host / Module modes combinations are possible:

Module short and long mode

OUTPUT TEST MUST BE CARRIED OUT FOR BOTH MODES

Module output test using N1091CKCA

TIEEE 802.3 ck Application New Device1						
File View Tools Help						
Set Up Select Tests Connect Run Automate Results HTML Report Configure -						
 Output Waveform Measurements TP1a (pattern: PRBS13Q) Cignaling Data and Eyo Mack Measurements TP1a (pattern: PRBS13Q) Cignaling Data and Eyo Mack Measurements TP1a (pattern: PRBS13Q) Return Loss PNA/N1055A Measurements PAM-4 Module Output Character stics at TP4 Short Module Output Mode ✓ Long Module Output Mode ✓ Output Waveform Measurements TP4 (pattern: PRBS13Q) ✓ Return Loss PNA/N1055A Measurements Utilities Auto-tune CTLE, DFE Eye Opening TP1a (Click a test's name to see its description) 						
Messages						
Summaries (click for details) Filter Clear Details						
2024-09-27 10:11:50:735 AM Ready						
Unsaved Changes 13 Tests						

\rightarrow The host channel (FE/NE) is emulated in the scope

• FE & NE channel cases will result in different CTLE range for the host reference receiver in the scope

Continuous time filter, DC gain for TP4 near-end Range Step size	g _{DC}	-5 to -1 1.0	dB
Continuous time filter, DC gain fo <mark>r TP4 far-end</mark> Range Step size	gDC	-9 to -2 1.0	dB

 Depending on the module mode (short or long) different Sparameters are used → The module mode must be known for the test

 \rightarrow Make sure the module is in the correct mode before testing!

KEYSIGHT TECHNOLOGIES

Module short and long mode

INPUT TEST INDEPENDENT OF THE MODULE MODE

🗾 Compliance RX Test Automation for IEEE 802.3ck New Device1						
File View Tools Help Set Up Select Tests Configure						
 IEEE 802.3ck Tests C2M Module Input (100G) Calibrations Crosstalk Calibration Crosstalk Calibration SJ Calibration UUGJ Calibration UUGJ Calibration BuJ Calibration Transmitter Pre-Cursor1 (0.0) Transmitter Pre-Cursor3 (0.0) Channel EQ Pre-Cursor1 (0.0) Cosstalk Calibration Stressed Eye Calit Mutti-lane Stresse Voltage Tolerance BUJ Calibration Stressed Eye Calibration BUJ Calibration Stressed Eye Calibration BUJ Calibration Stressed Eye Calibrat						
Messages Version Summaries (click for details) Filter Clear Details 2024-09-27 10:16:40:925 AM Select Another Address? (r.) - All tests selected on the 'select Tests' tab will be - All tests selected on the 'select Tests' tab will be - All tests selected on the 'select Tests' tab will be Unsaved Changes 2 Tests						

Module input test using M8091CKCA

The module receiver is expected to behave independently of the mode (TX only). However, some vendors may adjust the initial settings of the adaptive receiver equalizer depending on the module mode.

 \rightarrow It is recommended to repeat the input test for both module modes

Checking the module mode

USING CMIS INTERFACE

∩ í	i xía G8	3000	iE-02 4.2 Build 70	4x200GE,	100G Lane	s SETTINGS	STATS CM	IIS	≡	^	^	^	Î	Î	Î	Î	Î
Port 1,	QSFP-DI	D800,	BERT,				1		2								
Auto	~	CMIS	5.0 Lower Page 00 - Control and Status Essentials	~	Page 0	Bank 0 🗘	Refres	h									
0	_	_			_		_	_	=								
Addr	RW	Re	gister Name	Decode [+]	Rea	d	Read		Writ								
84	RO) C	ustom		00h	0000000	Read										
85	RO) N	1edia Type	SMF	02h	00000010	Read	_									
86	RO) Н	lost Interface ID App1	100GAUI-1-S C2M	4bh	01001011	Read										
87	RO) N	1edia Interface ID App1	100GBASE-DR	14h	00010100	Read		66		42	42 CAUI-4 C2M (PS (528 514)	42 CAUI-4 C2M (Annex 83E) with PS (528 514) EFC	42 CAUI-4 C2M (Annex 83E) with 103.13	42 CAUI-4 C2M (Annex 83E) with 103.13 4	42 CAUI-4 C2M (Annex 83E) with 103.13 4 25.78125	42 CAUI-4 C2M (Annex 83E) with 103.13 4 25.78125 NRZ
88	RO) H	lost Lane Count App1	1 / 1 Lanes	11h	00010001	Read		12		С	C 100GAUI-4 C	C 100GAUI-4 C2M (Annex 135E)	C 100GAUI-4 C2M (Annex 135E) 106.25	C 100GAUI-4 C2M (Annex 135E) 106.25 4	C 100GAUI-4 C2M (Annex 135E) 106.25 4 26.5625	C 100GAUI-4 C2M (Annex 135E) 106.25 4 26.5625 NRZ
89	RO) H	lost Lane Assignment Options App1	Begining Lanes	ffh	11111111	Read		13	_	D	D 100GAUI-2 C	D 100GAUI-2 C2M (Annex 135G)	D 100GAUI-2 C2M (Annex 135G) 106.25	D 100GAUI-2 C2M (Annex 135G) 106.25 2	D 100GAUI-2 C2M (Annex 135G) 106.25 2 26.5625	D 100GAUI-2 C2M (Annex 135G) 106.25 2 26.5625 PAM4
90	RO) H	lost Interface ID App2	Reserved/Custom	ffh	11111111	Read		75	-	4B 4C	4B 100GAUI-1-S	4B 100GAUI-1-S C2M (Annex 120G) 4C 100GAUI-1-L C2M (Annex 120G)	4B 100GAUI-1-S C2M (Annex 120G) 106.25 4C 100GAUI-1-L C2M (Annex 120G) 106.25	4B 100GAUI-1-S C2M (Annex 120G) 106.25 1 4C 100GAUI-1-L C2M (Annex 120G) 106.25 1	4B 100GAUI-1-S C2M (Annex 120G) 106.25 1 53.125 4C 100GAUI-1-L C2M (Annex 120G) 106.25 1 53.125	4B 100GAUI-1-S C2M (Annex 120G) 106.25 1 53.125 PAM4 4C 100GAUI-1-L C2M (Annex 120G) 106.25 1 53.125 PAM4
91	RO) N	1edia Interface ID App2	Undefined	00h	00000000	Read		14	-	E	E 200GAUI-8 C	E 200GAUI-8 C2M (Annex 1200)	E 200GAUI-8 C2M (Annex 120C) 212.50	E 200GAUI-8 C2M (Annex 120C) 212.50 8	E 200GAUI-8 C2M (Annex 120C) 212.50 8 26.5625	E 200GAUI-8 C2M (Annex 120C) 212.50 8 26.5625 NRZ
									15		F	F 200GAUI-4 C	F 200GAUI-4 C2M (Annex 120E)	F 200GAUI-4 C2M (Annex 120E) 212.50	F 200GAUI-4 C2M (Annex 120E) 212.50 4	F 200GAUI-4 C2M (Annex 120E) 212.50 4 26.5625	F 200GAUI-4 C2M (Annex 120E) 212.50 4 26.5625 PAM4

		RS (528,514) FEC					-
12	С	100GAUI-4 C2M (Annex 135E)	106.25	4	26.5625	NRZ	1
13	D	100GAUI-2 C2M (Annex 135G)	106.25	2	26.5625	PAM4	2
75	4B	100GAUI-1-S C2M (Annex 120G)	106.25	1	53.125	PAM4	2
76	4C	100GAUI-1-L C2M (Annex 120G)	106.25	1	53.125	PAM4	2
14	E	200GAUI-8 C2M (Annex 120C)	212.50	8	26.5625	NRZ	1
15	F	200GAUI-4 C2M (Annex 120E)	212.50	4	26.5625	PAM4	2
77	4D	200GAUI-2-S C2M (Annex 120G)	212.50	2	53.125	PAM4	2
78	4E	200GAUI-2-L C2M (Annex 120G)	212.50	2	53.125	PAM4	2
128	80	200GAUI-1 (Annex176E)	212.50	1	106.25	PAM4	2
16	10	400GAUI-16 C2M (Annex 120C)	425.00	16	26.5625	NRZ	1
17	11	400GAUI-8 C2M (Annex 120E)	425.00	8	26.5625	PAM4	2
79	4F	400GAUI-4-S C2M (Annex 120G)	425.00	4	53.125	PAM4	2
80	50	400GAUI-4-L C2M (Annex 120G)	425.00	4	53.125	PAM4	2
129	81	400GAUI-2 (Annex176E)	425.00	2	106.25	PAM4	2
81	51	800GAUI-8 S C2M (Annex 120G)	850.00	8	53.125	PAM4	2
82	52	800GAUI-8 L C2M (Annex 120G)	850.00	8	53.125	PAM4	2
130	82	800GAUI-4 (Annex176E)	850.00	4	106.25	PAM4	2
85	55	1.6TAUI-16-S C2M (Annex 120G)	1700.00	16	53.125	PAM4	2

CMIS 4.0 control

LOOPBACK

Table 8-69 Loopback Capabilities (Page 13h)

Byte	Bits	Name	Description	Туре
128	7	Reserved		RO
	6	Simultaneous Host and Media Side Loopback supported	0b=Simultaneous host and media side loopback not supported 1b=Simultaneous host/media side loopback supported	RQD
	5	Per-lane Media Side Loopback supported	0b=Individual lane media side loopback not supported 1b=Individual lane media side loopback supported	1
	4	Per-lane Host Side Loopback supported	0b=Individual lane host side loopback not supported 1b=Individual lane host side loopback supported]
	3	Host Side Input Loopback supported	0b=Host side input loopback not supported 1b=Host side input loopback supported]
	2	Host Side Output Loopback supported	0b=Host side output loopback not supported 1b=Host side output loopback supported	
	1	Media Side Input Loopback supported	0b=Media side input loopback not supported 1b=Media side input loopback supported	Byte
	0	Media Side output Loopback supported	0b=Media side output loopback not supported 1b=Media side output loopback supported	180

See CMIS 4.0 - page 13h

- 1. Check capabilities (13h Byte 128)
- Activate Media Side input loopback (13h Byte 181)
 e.g. for ch 1-8: 1111111

Bits Name Description Туре Media side output loopback lane 8 enable Ob=normal non-loopback operation 7 RW Media side output loopback lane 7 enable 1b=loopback operation enabled. 6 Opt. 5 Media side output loopback lane 6 enable If the Per-lane Media Side Loopback Media side output loopback lane 5 enable 4 Supported field=1, loopback control is per Media side output loopback lane 4 enable 3 lane. Otherwise, if any loopback enable bit is 2 Media side output loopback lane 3 enable set to 1, all Media side lanes are in output Media side output loopback lane 2 enable 1 loopback. Media side output loopback lane 1 enable 0 7 Media side input loopback lane 8 enable Ob=normal non-loopback operation RW 181 Media side input loopback lane 7 enable 1b=loopback operation enabled. 6 Opt. 5 Media side input loopback lane 6 enable If the Per-lane Media Side Loopback Media side input loopback lane 5 enable 4 Supported field=1, loopback control is per Media side input loopback lane 4 enable 3 lane. Otherwise, if any loopback enable bit is 2 Media side input loopback lane 3 enable set to 1, all media side lanes are in input Media side input loopback lane 2 enable 1 loopback. Media side input loopback lane 1 enable 0

Table 8-88 Loopback Controls (Page 13h)

CMIS 4.0 control

PRBS GENERATOR

See CMIS 4.0 - page 13h

- 1. Check capabilities (13h Byte 134-135)
- 2. Active Media side Generator e.g. for ch3-8: 1111100

The pattern checking capabilities of the module are advertised in Table 8-74. The pattern number corresponds to the pattern coding in Table 8-72.

Table 8-72 Pattern coding

PRBS Pattern code	Name	Description
0	PRBS-31Q	As defined in 802.3-2018 clause
1	PRBS-31	120.5.11.2.2
2	PRBS-23Q	ITU-T Recommendation 0.172,
3	PRBS-23	2005
4	PRBS-15Q	x^15 + x^14 + 1
5	PRBS-15	
6	PRBS-13Q	As defined in 802.3-2018 clause
7	PRBS-13	120.5.11.2.1
8	PRBS-9Q	As defined in 802.3-2018 clause
9	PRBS-9	120.5.11
10	PRBS-7Q	x^7 + x^6 + 1
11	PRBS-7	
12	SSPRQ	As defined in 802.3-2018 clause
		120.5.11.2.3
13	Reserved	
14	Custom	Vendor Pattern
15	User Pattern	Pattern provided in bytes 224-255

Table 8-78 Media Side Pattern Generator Controls (Page 13h)

Byte	Bits	Name	Description	Туре
152	7	Media Side Generator Lane 8 enable	1b=Enable generator, using the	RW
	6	Media Side Generator Lane 7 enable	configuration defined in bytes 153-159	Opt.
	5	Media Side Generator Lane 6 enable	0b=Disable pattern generator	
	4	Media Side Generator Lane 5 enable		
	3	Media Side Generator Lane 4 enable		
	2	Media Side Generator Lane 3 enable		
	1	Media Side Generator Lane 2 enable		
	0	Media Side Generator Lane 1 enable		
	-			

Discussion

1-2.50221

Co-propagating aggressors

CO-PROPAGATING AGGRESSOR LANES

Why do we skip FEXT for Rx test?

- Stress lane is calibrated as worst-case eye that includes the impact of co-propagating crosstalk
- FLR (post-FEC) can be estimated from single lane error statistics
- Use the same signal for all lanes

A1.2.3 CABLE CHARACTERIZATION

Cables are characterized using two Module Compliance Boards, one on each end of the cable under test (CUT) as shown in <u>Figure 224 on page 667</u>, using the method described in IEEE 802.3-2015 Annex 86A. Note that the MCBs supply power to the connected cables and provide access to the Management Interface. Passive cable testing requires only the use of the vector network analyzer.

 \rightarrow FEXT can be omitted if the stress lane is calibrated without FEXT

