

What's new – Volume 1 Release 1.7

Specification update overview

- Volume 1, Release 1.7, published July 11, 2023
- The specification defines InfiniBand and RoCE
- Available to IBTA Members

- 2091 pages
- 60 comments submitted and included
- New features added by both the LWG and the MgtWG

What's new in Vol1 Release 1.7

IBTA - Management Working Group

Support For Large Radix Switches

- 1.7 Spec Version
 - Finalize backward compatible support for large radix switches and directed route (DR) MADs
 - Support XDR speeds

- Next Steps
 - Add support for XDR speed FEC modes
 - Review and enhance various sections of the specification to incorporate user feedback

Update DR For Large Radix Switches

 Directed route algorithm now supports large radix switches as endpoints and as intermediate devices

Next Generation Speed

- Spec 1.7 supports XDR speed ~200Gb/s per lane.
 - QSFP → 800 Gb/s
 - QSFP-DD and OSFP → 1600 Gb/s
- Update the PortInfo MAD with new extended speeds to support the future generation
- Updates were made to chapters 14 and 15

What's new in Vol1 Release 1.7

IBTA - Link Working Group

Network Probing Problem Statement

- RDMA congestion control is evolving
 - Timely
 - HPCC
 - Swift
- A simple in-band RTT measurement primitive is not available in RDMA transport
 - E.g. No response on RDMA READ
 - E.g. ACK coalescing on RDMA WRITE / SEND
- New primitives are required for efficient congestion control e.g.:
 - End to end round trip measurements
 - End to end telemetry collection
- Network Probing extensions (Annex 20) are addressing this requirement
 - End to end measurement collection primitives between reaction point and notification point
 - No RDMA transport level changes, independent of the transport service and link layer (IB / RoCE)

Network Probing Design Guidelines

- No impact for data path packets
 - E.g. RDMA / SEND / ACK
- No changes to transport service / link / network layers
 - E.g. RC, UC, RD, UD
 - E.g. IB / RoCE
- Interoperability and support
 - Ability to work on any RoCE/IB platform
- Network routing robustness
 - Network probe packet should follow the flow
- Ability to hold payload & relay back
- Robustness to network configuration
 - Ability to work with & without PFC / ECN / etc.

Network Probing Architecture

Network Probe Overview

- Network Probes are a generalized mechanism for probing the state of the network.
- Probes are sent from one end point to another and may interact with network entities along the way.
- Network Probes can be used to collect information about the network without the need to have a specific process running on the remote node.
- Network Probes utilize the basic MAD format and appear as standard MAD packets in the network.

Others

- Multicast congestion control recommendation
- Ordering & error flows clarification for MPE Verify Check / Verify Compute
- Memory windows interoperability with MPE
- APM clarification for RoCE

For more information

https://www.infinibandta.org/ibta-specification/

- RDMA vendors:
 - Implement Network Probing in your InfiniBand and RoCE adapter(s)
 - Implement Large Radix Switches
- RDMA users:
 - Enhance your application(s) and ULP(s) to leverage Network Probing