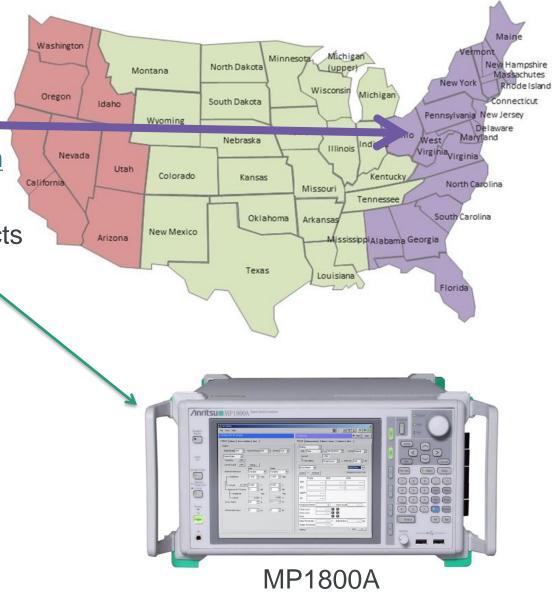
100G EDR and QSFP+ Cable Test Solutions

(IBTA, 100GbE, CEI)

DesignCon 2017 James Morgante Anritsu Company


Presenter Bio

James Morgante Application Engineer Eastern United States _____ james.morgante@anritsu.com

Wireline Digital / Optical Products

Career Experience

Product Development RF, Mixed-Signal & Optical, Application Engineering, Test Engineering Signal Integrity

Presentation Focus

QSFP+ Cables / Modules

Roadmap

Active Time Domain (ATD) Test Objective

EDR ATD Test System Overview

Equipment requirements

The calibration process

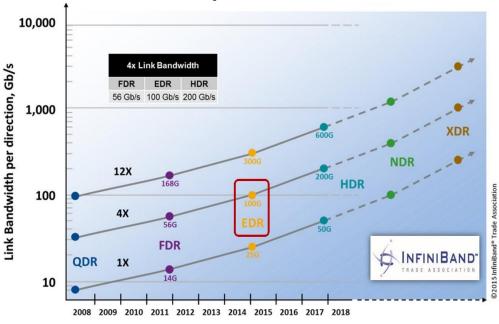
The DUT test

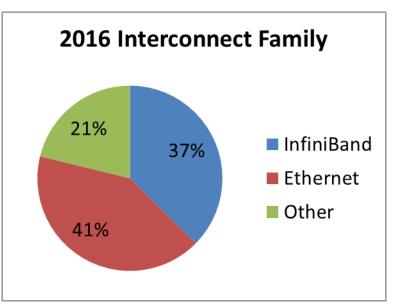
AOC final test

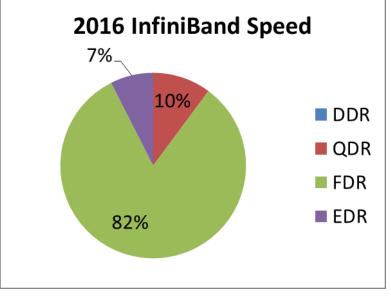
InfiniBand & PAM4 (200G)

100G Modules & AOCs

- QSFP+ Connectors.
- 4 x 25.78125 Gb/s Electrical Interface
- Data transfers rates over 100Gb/s
- Copper and Optical.
- Single & Multimode
- Multiple Fibers (IBTA EDR, 100GBase-SR4)
- Multiple Wavelengths (IEEE 100GBase-LR4)
- Single or Multiple connections per lane of traffic.




IBTA Interconnects


InfiniBand Data	Baud Rate (Gbaud)	Per Lane (Gb/s)	x4 Lanes (Gb/s)	Modulation	
Single Data Rate	SDR	2.50	2.50	10.00	NRZ
Double Data Rate	DDR	5.00	5.00	20.00	NRZ
Quad Data Rate QDR		10.00	10.00	40.00	NRZ
Fourteen Data Rate	FDR	14.06	14.06	56.24	NRZ
Enhanced Data Rate	EDR	25.78	25.78	103.12	NRZ
High Data Rate	HDR	25.78	51.56	206.24	PAM4

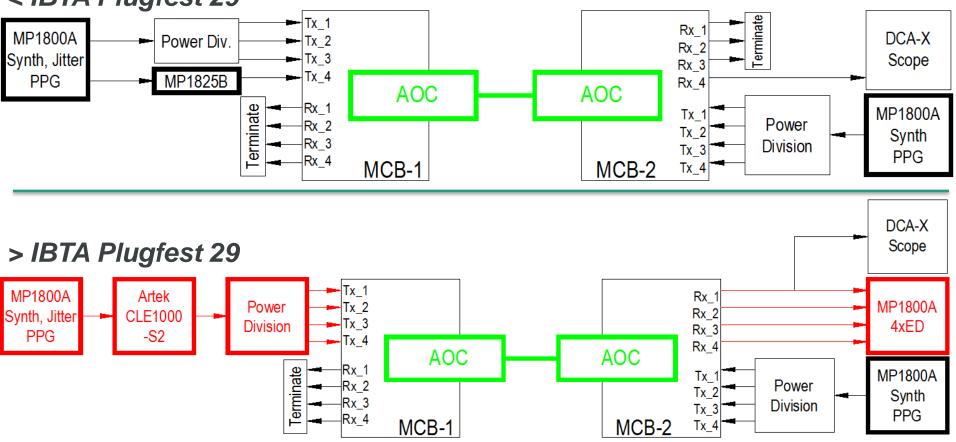
InfiniBand Roadmap

http://infinibandta.org/content/pages.php?pg=technology_overview

http://www.top500.org/lists/2016/11/

ATD (Stressed Receiver) Test Objective

- Live Demo @ Anritsu Booth # 633
- Stressed receiver sensitivity
- Output eye compliance
- Fully described in EDR MOI: https://cw.infinibandta.org/document/dl/7807
- Test methods used at IBTA Plugfests for EDR AOCs
- **Simplified** test approach.
- 4-Lane BER, 1-Lane Time Domain

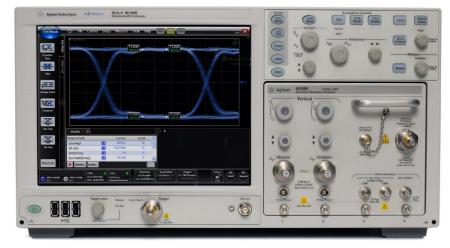

InfiniBand Trade Association

Anritsu / Keysight Method Of Implementation

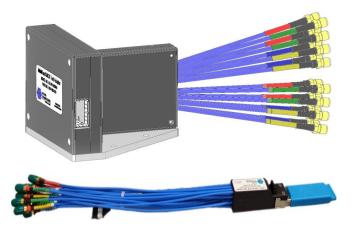
Active Time Domain Testing For EDR Active Cables

InfiniBand ATD Advancement

< IBTA Plugfest 29


Changes:

- Adopted CAUI-4 Stressed Signal calibration methods described in 802.3bm Annex 83E.
- Calibration through a channel and usage of DCA-X CTLE function to emulate DUT CTLE.
- BER measurements to judge performance of DUT under stressed conditions.
- DUT CTLE to compensate for channel loss during test.


Principal Components

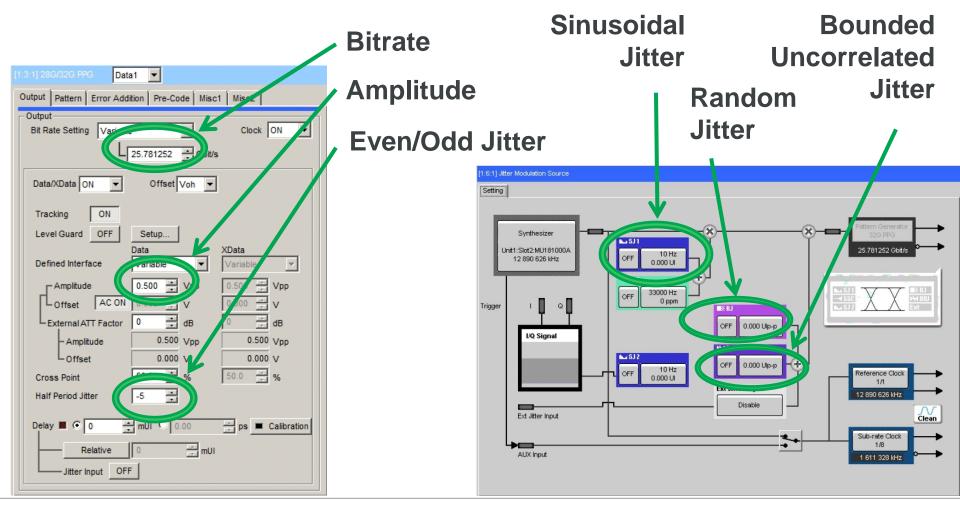
Multi-Port BERT Anritsu MP1800A Shown

High BW Sampling Scope Keysight DCA-X Shown

Compliance Fixtures Wilder Technologies MCB /HCB

Softw	are Forge
Stopped	Stopped
Rx Ampl. Range Temp. 0 1 2 0 1 2 Tx CR Rx CR 1 1 2 3 Tx CTLE Setting 1 2 0 1 2 4 5 6 7 Tx Fault 1 2 3 4 5 6 7 Tx Fault 1 2 3 A 7 Reset	Rx Ampl. Range Temp. 0 1 2 0.0000 °C Clock Recovery Rx LOS 1 2 3 4 Tx CR Rx CR 1 2 3 4 Rx CDR LOL 1 2 3 4 Alarm Reset v v 1 <td< th=""></td<>

AOC Control Software Forge EEPROM Command Center



Variable ISI Channel Artek CLE-1000-S2

Pattern Generators (Anritsu MP1800A SQA)

- Generating the right Stress Recipe
- Multi-Channel for Forward & Reverse Traffic
- Comprehensive control of signal characteristics & applied jitter

Measurement Equipment (DCA-X 86100D, MP1800A SQA)

Scope: (DCA-X 86100D / 86108B)

- For Victim Input Signal Cal & DUT Measurements
- 2-Channel input for differential measurements
- ≈ 50 GHz Bandwidth
- Jitter Decomposition & Analysis Software
 - o DDPWS, J2, J9 Jitter
- Eye Mask Compliance testing
 - Victim Input & Victim Output
- Precision Time Base
- Clock Recovery Capabilities
 - o 1st order, LBW 10MHz,
 - o 0 dB peaking, 20dB/decade roll/off
- CTLE needed for calibration

Error Detector: (MP1800A / MU183040B)

- Used for DUT Measurements
- Multi-Channel to monitor all lanes.
- Measure BER

12 File	1						
1:3:1 MU1830408 Data1 ER Total	1.34976-07	1:3:1 MU183040B Data1 EC Total	417578				
1:3:1 MU183040B Data2 ER Total	4.6300E-08	1:3:1 MU1830408 Data2 EC Total	143241				
1:4:1 MU183040B Data1 ER Total	1.6161E-12	1:4:1 MU183040B Data1 EC Total	5				
1:4:1 MU1830408 Data2 ER Total	1.4260E-08	1:4:1 MU183040B Date2 EC Total	44119				

Test Fixtures (Wilder Technologies)

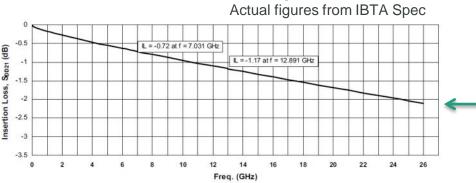
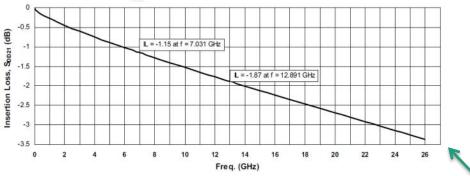
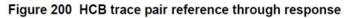




Figure 201 MCB trace pair reference through response

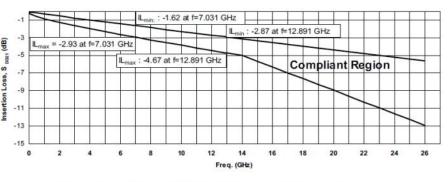
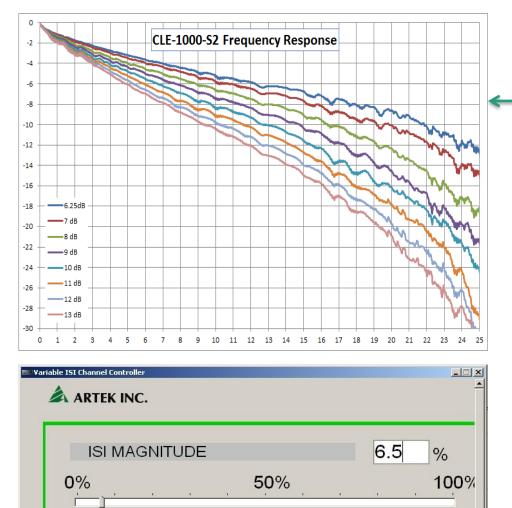


Figure 202 Mated HCB/MCB trace pair through response

Module Compliance Boards (MCB)


- Interface between QSFP cables and test
 equipment
- Drive transmit data into TX ports
- Measure received data from RX ports
- Supply power to the cable ends
- Low Speed interconnects
 - Cable programming
 - Reading registers

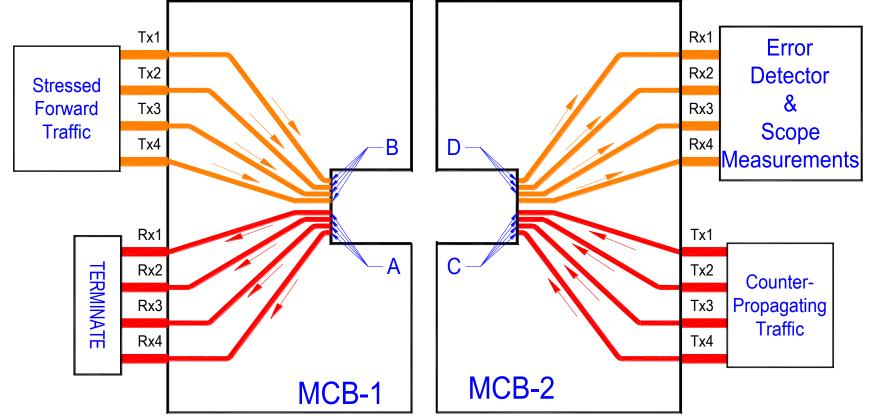
Host Compliance Board (HCB)

Break-out fixture to access QSFP ports

- Used only during ATD station calibration
- Inject signals into specific test points
- Measure signals at specific test points

ISI Channel (CLE-1000-S2 Ace Unitech / Artek)

Plugfest Data

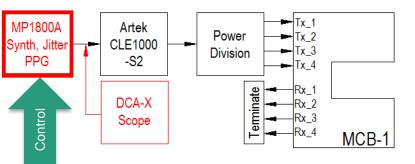

- Objective: Create Eye Closure normally produced by channel.
- Calibration requires a specified channel loss prior to DUT
- Affected signal at output of ISI channel is divided across the 4 forward lanes.
- DUT input signal is calibrated at output of channel (-10dB @ Nyquist) using Sampling Scope & CTLE to compensate.

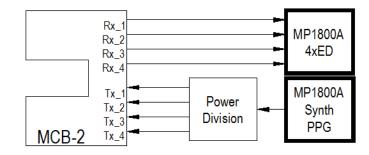
Simple control panel

Com port no

Close

The EDR Calibration Process Setting up equipment signals




- 1. Set PPG Source Baseline Stresses (Forward Traffic)
- 2. Set MCB-1 counter-propagating aggressors (A) for crosstalk during forward traffic calibration.
- 3. Determine & set scope CTLE.

4. Set MCB-1 forward traffic (B) in presence of counter-prop aggressors.

- 5. Set MCB-2 aggressors (C) for crosstalk needed during DUT test.
- 6. Signal levels at point (D) are set after inserting DUT.

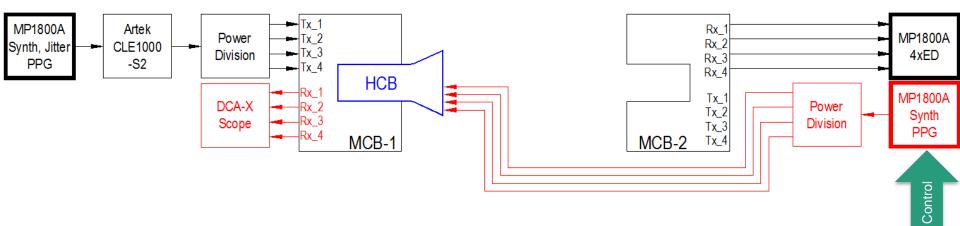
Calibration Step 1: Setting Baseline PPG Stress

- Set baseline Even-Odd Jitter, SJ, RJ, and BUJ as required by 802.3bm, Annex 83.
- SJ characteristics
 - AOC Clock Recovery stressor
 - .05UI @ 91MHz (used at PF29, 30)
- Backfill with BUJ to meet TJ requirement.
- Use DCA-X Scope to verify jitter components.

Excerpt: 802.3bm

Table 83E–9—Pattern generator jitter characteristics

Parameter	Value				
Total Jitter (pk-pk) ^a	0.28 UI				
Random Jitter (pk-pk) ^b	0.15 UI				
Max even-odd jitter (pk-pk) ^c	0.035 UI				


^aTotal Jitter at BER of 10⁻¹⁵ ^bRandom Jitter at BER of 10⁻¹⁵ ^cAs defined in 92.8.3.8.1

	Time								
RJ/PJ Histogram	Amp	24.03391 ns						Signals Differential 1A	*
DDJ Histogram	Amplitude					TJ Histogra	n -		
TJ Histogram	Meas		T		Manager and a				
41 M	$\overline{\mathbb{C}}$								
DDJ Vs Bit	R I	Jitter 🕞)			♥ +	ſ	Graphs	Amplit
			781220 Gb/s Pat	Length: 511		Src: D1A Rate: 25.78	220 Gb/s Pat		
	VCR	Ziella en							
	JSA/CRE	F/2 (p-p):	2.2 mUI	TJ (1.0E-15):	292 mUI	Eye Opening:		Signal Amplitude:	
	VCRE	F/2 (p-p): DJ (δ - δ):	2.2 mUI 142 mUI	RJ (rms):	9.65 mUI	TI (1.0E-15) Ones:	144.0 mV	TI (1.0E-15) Zeros	
Composite TJ Histogram	VCRE	F/2 (p-p): DJ (δ - δ): BUJ (δ - δ):	2.2 mUl 142 mUl 117.0 mUl	RJ (rms): DDJ (p-p):	9.65 mUI 34 mUI	TI (1.0E-15) Ones: RN (rms) Ones:	144.0 mV 1.30 mV	TI (1.0E-15) Zeros RN (rms) Zeros:	s: 174.5 mV 1.400 mV
	VCRE	F/2 (p-p): DJ (δ - δ): BUJ (δ - δ): DCD:	2.2 mUI 142 mUI 117.0 mUI 10.2 mUI	RJ (rms):	9.65 mUI	TI (1.0E-15) Ones: RN (rms) Ones: DI (δ - δ) Ones:	144.0 mV 1.30 mV 123.5 mV	TI (1.0E-15) Zeros RN (rms) Zeros: DI (δ - δ) Zeros:	174.5 mV 1.400 mV 152.80 mV
Histogram	VCRE	F/2 (p-p): DJ (δ - δ): BUJ (δ - δ):	2.2 mUl 142 mUl 117.0 mUl	RJ (rms): DDJ (p-p):	9.65 mUI 34 mUI	TI (1.0E-15) Ones: RN (rms) Ones: DI (δ - δ) Ones: ISI (p-p) Ones:	144.0 mV 1.30 mV 123.5 mV 125.30 mV	TI (1.0E-15) Zeros RN (rms) Zeros: DI (δ - δ) Zeros: ISI (p-p) Zeros:	174.5 mV 1.400 mV 152.80 mV 155.55 mV
Histogram	VCRE	F/2 (p-p): DJ (δ - δ): BUJ (δ - δ): DCD:	2.2 mUI 142 mUI 117.0 mUI 10.2 mUI	RJ (rms): DDJ (p-p):	9.65 mUI 34 mUI	TI (1.0E-15) Ones: RN (rms) Ones: DI (δ - δ) Ones: ISI (p-p) Ones: BUI (δ - δ) Ones:	144.0 mV 1.30 mV 123.5 mV 125.30 mV 1.2 mV	TI (1.0E-15) Zeros RN (rms) Zeros: DI (δ - δ) Zeros: ISI (p-p) Zeros: BUI (δ - δ) Zeros:	5: 174.5 mV 1.400 mV 152.80 mV 155.55 mV 460 μV
Composite DDJ	VCRE	F/2 (p-p): DJ (δ - δ): BUJ (δ - δ): DCD:	2.2 mUI 142 mUI 117.0 mUI 10.2 mUI	RJ (rms): DDJ (p-p):	9.65 mUI 34 mUI	TI (1.0E-15) Ones: RN (rms) Ones: DI (δ - δ) Ones: ISI (p-p) Ones:	144.0 mV 1.30 mV 123.5 mV 125.30 mV 1.2 mV 600 µV	TI (1.0E-15) Zeros RN (rms) Zeros: DI (δ - δ) Zeros: ISI (p-p) Zeros:	174.5 mV 1.400 mV 152.80 mV 155.55 mV

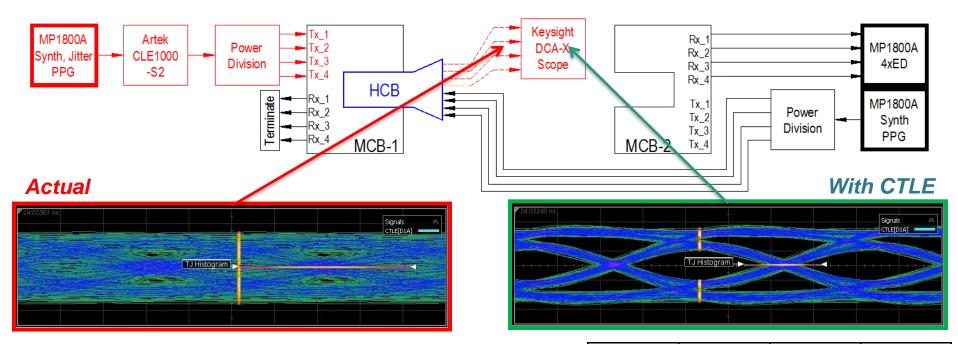
Excerpt: 802.3bm 83E.3.4.1.1 Module stressed input test procedure

be below the upper frequency limit of the pattern generator external modulator input. <u>Random jitter and</u> bounded uncorrelated jitter are added such that the output of the pattern generator approximates a jitter profile given in Table 83E–9. The target pattern generator 20% to 80% transition time in the module stressed

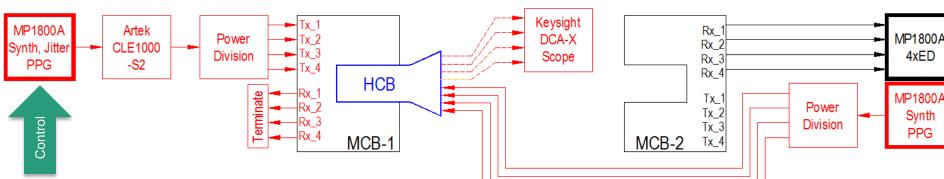
Calibration Step 2: Setting Counter-Propagating FEXT Aggressors

- Set counter-propagating aggressor signal levels to generate crosstalk for the forward traffic calibration.
- Inject aggressors into HCB Rx ports and measure with scope at corresponding MCB-1 Rx ports.

Excerpt: IBTA Spec v2r1_3_1.160825


Table 87 EDR limiting active cable input electrical specifications

Symbol	Parameter	Specification value(s)	Unit	Conditions			
	Crosstalk signal Vpk-pk	+/- 5% (See Conditions)	mV	At TP6a.			
	Crosstalk signal transition time, 20%-80%	17	ps	Co-propagating aggressors. Crosstalk signal Vpk-pk to match lane under test, to within +/- 20%.			
	Crosstalk calibration signal Vpk-pk, each aggressor	450 +/- 10%	m∨	At TP7a. Counter-propagating aggressors.			
	Crosstalk calibration signal transition time, 20%-80%	17 +/- 3	ps	Apply during crosstalk calibration only ^a			

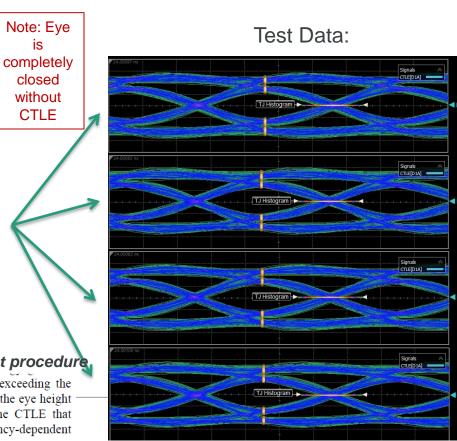

Calibration Step 3: Determine Scope CTLE Setting

- ISI Channel will significantly close the input eye.
- Goal: Use the scope's software CTLE to simulate the effect of the DUT's hardware CTLE.
- Target Eye Width and Height must be adjusted while applying software CTLE.
- The Optimal setting = setting with maximum product.

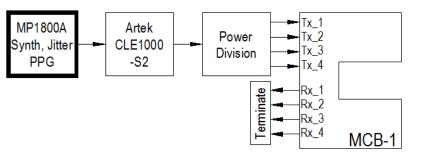
Scope CTLE	Eye Width (UI)	Eye Height (mV)	Product
2	2 N/A		N/A
3	N/A	N/A	N/A
4	0.418	70	29.26
5	0.512	86	44.03
6	0.536	102	54.67
7	0.54	111	59.94
8	0.512	114	58.37
9	0.51	100	51.00

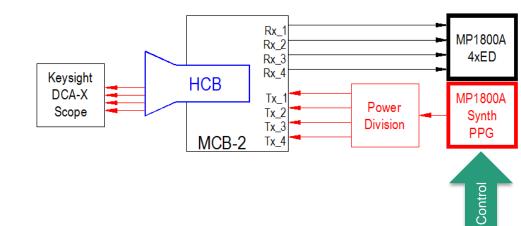
Calibration Step 4: Setting Forward Traffic Stress

is


- Send forward signal through ISI Channel & Divider.
- Counter- propagating aggressors turned on.
- Adjust the stressed forward signals.
- Adjust RJ to achieve Eye Width •
- Adjust Amplitude to achieve Eye Height ۰
- Set Eye Width & Eye Height targets per IBTA Spec
- Scope Measurement with CTLE, all channels

Excerpt: IBTA Spec v2r1_3_1.160825


EH15	Eye Height tolerance, at 1E-15	120	mV	
EW15		0.53	UI	At TP6a, with TX CDR enabled
	Eye Width tolerance, at 1E-15	0.71	UI	At TP6a, with TX CDR bypassed (i.e., disabled)


Excerpt: 802.3bm 83E.3.4.1.1 Module stressed input test procedure.

83E.4.2. Random jitter and the pattern generator output amplitude are adjusted (without exceeding the differential pk-pk input voltage tolerance specification as shown in Table 83E-7) to result in the eye height and eve width given in Table 83E-8 using the reference receiver with the setting of the CTLE that maximizes the product of eye height and eye width. For the low loss case, discrete frequency-dependent

Calibration Step 5: Setting Counter-Propagating NEXT Aggressors

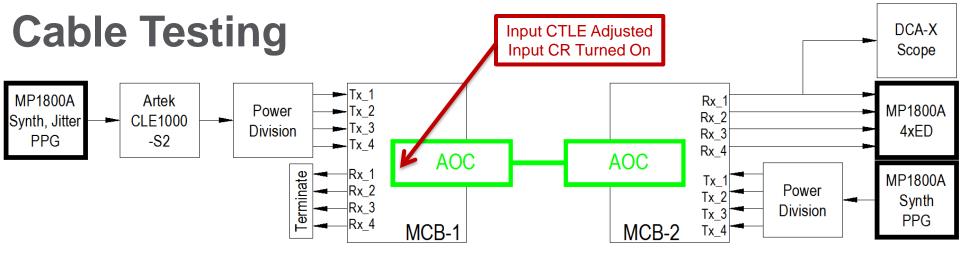
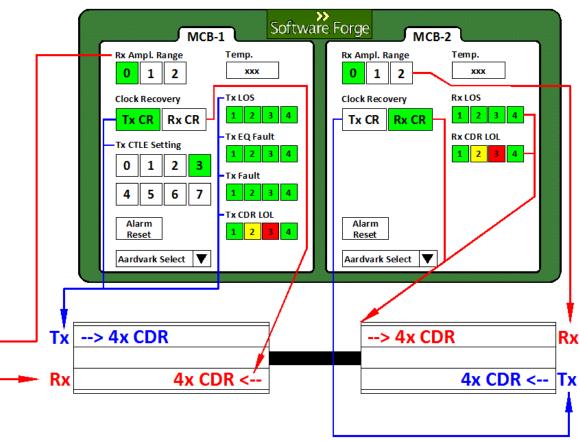

- Set correct counter-propagating aggressor signal levels to generate crosstalk for the DUT Test.
- <u>Inject</u> counter–propagating aggressor signals into MCB-2 Tx ports and <u>measure</u> with scope at corresponding HCB Tx ports.

 Table 88 EDR limiting active cable output electrical specifications

Symbol	Parameter	Specification value(s)	Unit	Conditions		
Х	eye mask parameter, time; see <u>Figure 86 on page 282</u>	0.30	UI	Hit ratio=5E-5 with 100 Ohm load at TP7a		
Y1, Y2	Diff. unsigned output voltage range 0 (required) range 1 (optional) range 2 (optional)	50, 225 100, 350 150, 450	m∨	(Note ^a) At TP6a. Counter-propagating aggres- sors. ^b Transition time measured at this PRBS9 test pattern tran- sition: 1111111 <u>10</u> 000011		
	Crosstalk signal Vpk-pk, each aggres- sor	700 +/- 10%	m∨			
	Crosstalk signal transition time, 20%-80%	17 +/- 3	ps			

BER Measurement:

Error Free, 2 minute gate, 4 channels


Scope Measurement: J2, J9, Mask, Rise & Fall Times, 1 channel, 1M Samples

,	J (,				,			
User Customize Dialog			X	Eye/Mask	ᠰ кеүзіднт File	e Setup M	leasure Tool	ls Apps H	Help	Auto Scale	Run Single Clear
12 T ile		3. 14 弊 8. 11	t 🛐 ጰ 🛓 🔜 🕨 📕 Close	- I I	Waveform						 Limit (Samples) : 2000896
1:3:1 MU183040B Data1 ER Total	1.3497E-07	1:3:1 MU183040B Data1 EC Total	417578	Advanced Eye Setup Add Eye Contour		2					Signals Differential IA
1:3:1 MU183040B Data2 ER Total	4.6300E-08	1:3:1 MU183040B Data2 EC Total	143241		P Results	3					Mask Test
1:4:1 MU183040B Data1 ER Total	1.6161E-12	1:4:1 MU183040B Data1 EC Total	5	RJ (ms)	Measurement J9 (R]: 674fs) J2 (R]: 674fs) J2 J2 J9 Eye Ampl Rise Time	AIG AIG AIG AIG AIG AIG	686.8 mUI 471.4 mUI 471.4 mUI 849.0 mUI		Max Mask 1 705 Source 489 Align Method 489 Waveform 540 Samples/U Margi 312 +	Data Rate: 2	EDR_Cab_Out Change
1:4:1 MU183040B Data2 ER Total	1.4260E-08	1:4:1 MU183040B Data2 EC Total	44119	More (1/2)	Fall Time Eye Height[Ampl]	D1A D1A	12.66 ps	4.22 ps 195.8 mV		Acquisition F. Full Pattern: Off Sr	Frame Trigger Sec OR (Sot.1) Clock/Dwded

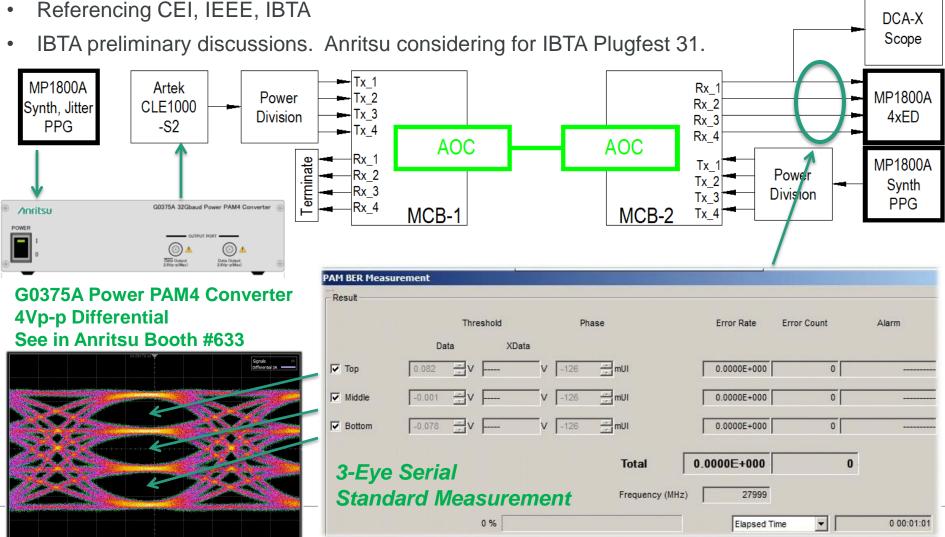
Scope judges Signal Integrity performance (Cable Output). ED judges BER (Cable Input).

Cable Control EEPROM Command Center

- Developed by Software Forge for AOC management.
- Visual interface shows control and alarm activity.
- DUT features such as CTLE and CDR must be exercised to maximize chances of correct bit decisions.
- TX Clock & Data recovery at DUT Tx input reduces impact of jitter stresses applied by MP1800A Pattern Generators (likely to impact BER)
- Hardware CTLE compensates for frequency response of ISI channel, maximizing the chances of making correct bit decision. (likely to impact BER)
- Rx Clock & Data recovery further reduces waveform at far side of cable. (less likely to impact BER)

Adjust controls at cable input to optimize BER Adjust controls at cable output to optimize signal quality.

IBTA EDR ATD System Implementation

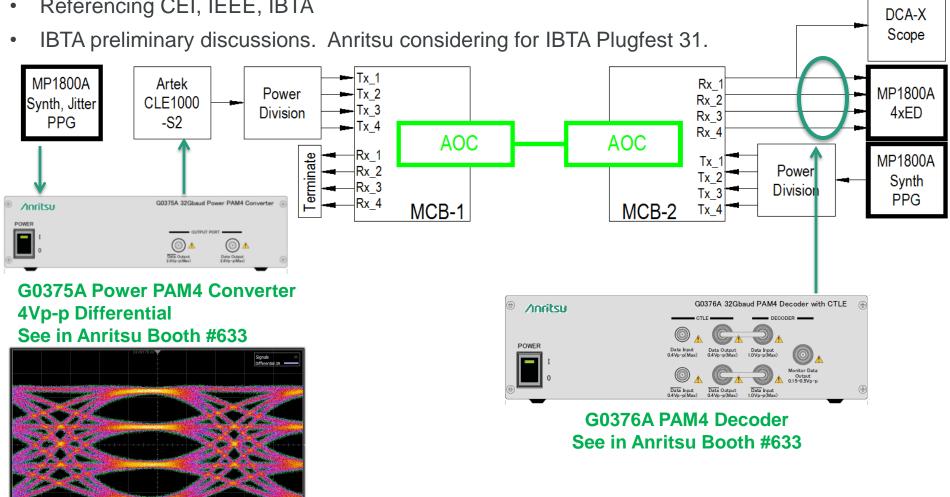

Visit Anritsu Booth 633 for Live Demonstration

Path to InfiniBand HDR (200G PAM4)

Considerations for ATD / Stressed Receiver Testing:

- Signal Generation / requirements / patterns used.
- **BER Measurements**

Please attend Anritsu Session for more info Toward 400G (IEEE802.3 and CEI) 56G PAM4 Bit Error Rate Test Solution 2:50 pm in Great America 2


44

Path to InfiniBand HDR (200G PAM4)

Considerations for ATD / Stressed Receiver Testing:

- Signal Generation / requirements / patterns used.
- **BER Measurements**
- Referencing CEI, IEEE, IBTA

Please attend Anritsu Session for more info Toward 400G (IEEE802.3 and CEI) 56G PAM4 Bit Error Rate Test Solution 2:50 pm in Great America 2

Wrap-Up

- For Cable/Module testing, much of the time & effort goes toward achieving a spec-compliant and calibrated test station.
- Accurate & repeatable calibration means trustworthy results.
- It is important for test equipment to provide reliable control and measurement of key signal parameters.
- High-performance / quality signals and components are required so external impairments do not influence DUT results.
- The solutions presented here satisfies these requirements with proven and robust test platforms that meet the industry's growing needs.

Thank You.

Visit Anritsu Booth 633 for Live Demonstration

Questions?

