What’s new – Volume 1 Release 1.6

Overview
Specification update overview

- Volume 1, Release 1.6, published July 15, 2022
- The specification defines InfiniBand and RoCE
- Available to IBTA Members

- 2074 pages
- 83 comments submitted and included
- New features added by both the LWG and the MgtWG
What’s new in Vol1 Release 1.6

IBTA - Management Working Group
Support For Large Radix Switches

• 1.6 Spec Version
 • Support for class version 2 directed-route and LID-route SMPs
 • Updated the directed-route algorithm to be transparent and backward-compatible
 • Added multiple diagrams to describe how the directed-route algorithm supports large radix switches
 • Defined NodeInfo for class version 2

• Next Steps
 • Define class version 2 – SwitchInfo and other required management attributes
Support For Large Radix Switches

256 HCAs non blocking topology

<table>
<thead>
<tr>
<th></th>
<th>64 Port Switch</th>
<th>256 Port Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>Switches</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Max # hops</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Next Generation Speed

• Spec 1.7 is expected to support XDR speed ~200Gb/s per lane.
 • QSFP ➔ 800 Gb/s
 • QSFP-DD and OSFP ➔ 1600 Gb/s

• Coordinate with EWG to support signaling rate and physical layer requirements.
What’s new in Vol1 Release 1.6

IBTA - Link Working Group
Extended OpCodes

• See section 9.3.9
 • Two new OpCodes for generalized transport function classes
 • Get Class (Read like)
 • Put Class (Write like)
 • Extended OpCode Extended Transport Header (EOETH)
 • New 16b OpCode space per transport function class
 • Additional fields used for transport management
 • Each OpCode may define new headers to follow the EOETH
• Utilizes GET class extended OpCode with VERIFY CHECK OpCode specified in the EOETH Extended OpCode

• Provide native transport additions to allow a requestor to supply a Requestor Hash Value and ask the Responder to verify it calculates the same hash value

• Pipelined operation: Responder breaks the connection if the hash check fails allowing other writes, flushes, and verifies to be queued behind this operation

• The hash algorithm to be utilized is pre-determined by the requestor and responder at memory registration time and not specified in the VERIFY CHECK transport

Figure 373: XRC VERIFY CHECK request packet format

Figure 374: RC VERIFY CHECK response packet format
Figure 378: Transport Flow for VERIFY CHECK – Responder fails to verify requestor calculated hash.
MPE - VERIFY COMPUTE

- Utilizes GET class extended OpCode with VERIFY COMPUTE opcode specified in the EOETH Extended Opcode
- Provide native transport additions to allow a requestor to request the responder to calculate a hash over a specified address range
- Responder returns its calculated hash result back to the requestor
- The hash algorithm to be utilized is pre-determined by the requestor and responder at memory registration time and not specified in the VERIFY COMPUTE transport

Figure 369: XRC VERIFY COMPUTE request packet format

Figure 370: RC VERIFY COMPUTE response packet format
Figure 375: Transport Flow for VERIFY COMPUTE – requestor verifies responder calculated hash
For more information

https://www.infinibandta.org/ibta-specification/

• RDMA vendors:
 • Implement MPE in your InfiniBand and RoCE adapter(s)

• RDMA users:
 • Enhance your application(s) and ULP(s) to leverage MPE